Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Oral Biol ; 158: 105871, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38128336

ABSTRACT

OBJECTIVE: Florida manatee feeding ecology is critical to species survival, but the role of dental pads in feeding has received limited attention. This study characterized the gross and microscopic anatomy of the manatee's dorsal and ventral dental pad in relation to these structures' importance in mastication, which furthers our understanding of manatee feeding and health. DESIGN: Whole heads from 6 animals (4 male and 2 female) of varying sizes were examined grossly. Sections (5 µm) from throughout the dorsal and ventral dental pads were stained with Hematoxylin and Eosin to document microanatomy. The thickness of the epithelium and stratum corneum were measured. RESULTS: The ventral dental pad epidermal (1129-3391 µm) and stratum corneum (331-1848 µm) thickness increased with increased body size. The dorsal dental pad epidermal (690-1988 µm) and stratum corneum (121-974 µm) thickness varied relative to size. The dental pad anatomy, including the thickened stratum corneum, indicates an importance similar to molars in grinding and physically breaking up plant material. Extensive appendages including filiform-like papillae and well-developed rete were observed and likely provide physical support for mastication. CONCLUSION: While the sample size limits specific conclusions based on sex or age, it provides a good overview of the anatomy of the dental pads. The manatee is the only mammal known to have a ventral dental pad and the well-developed grinding surfaces demonstrates a crucial role in mastication for these structures. These dental pads should be evaluated during health checks and necropsies and considered in future research on manatee's feeding mechanisms.


Subject(s)
Trichechus manatus , Animals , Mammals , Mastication , Trichechus , Trichechus manatus/anatomy & histology , Male , Female
2.
Anat Rec (Hoboken) ; 305(3): 680-687, 2022 03.
Article in English | MEDLINE | ID: mdl-34264538

ABSTRACT

The sense of taste is associated with the evaluation of food and other environmental parameters such as salinity. In aquatic mammals, anatomic and behavioral evidence of the use of taste varies by species and genomic analysis of taste receptors indicates an overall reduction and, in some cases, complete loss of intact bitter and sweet taste receptors. However, the receptors used by taste buds in the oral cavity are found on cells in other areas of the body and play an important role in immune responses. In the respiratory tract, an example of such cells is solitary chemosensory cells (SCCs) which have bitter and sweet taste receptors. The bitter receptors detect chemicals given off by pathogens and initiate an innate immune response. Although many aquatic mammals may not have a role for taste in the assessment of food, they likely would benefit from the added protection that SCCs provide, especially considering respiratory diseases are a problem for many aquatic mammals. While evidence indicates that some species do not possess functional bitter receptors for taste, many do have intact bitter receptor genes and it is important for researchers to be aware of all roles for these receptors in homeostasis. Through a better understanding of the anatomy and physiology of aquatic mammal's respiratory systems, better treatment and management is possible.


Subject(s)
Taste Buds , Animals , Immunity, Innate , Mammals , Receptors, G-Protein-Coupled , Taste/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...